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Frequency and width crossing of two interacting resonances in a microwave cavity

M. Philipp,1 P. von Brentano,1 G. Pascovici,1 and A. Richter2,*
1Institut für Kernphysik, Universita¨t zu Köln, Zülpicher Straße 77, D–50937 Köln, Germany

2Wissenschaftskolleg zu Berlin, Wallotstraße 19, D–14193 Berlin, Germany
~Received 20 October 1999!

Frequency and width crossing have been observed for two coupled resonances in a microwave cavity. The
cavity consisted of two nearly identical rectangular boxes. The boxes were coupled by a slit of variable width.
The data are well described by a non-HermiteanS matrix leading to a 232 non-Hermitean effective Hamil-
tonian. The values of the interaction strengthuvu for which width crossing and frequency crossing, respectively,
were observed, are above and below a critical valueuvcu for which one expects a joint frequency and width
crossing.

PACS number~s!: 05.45.Mt, 02.60.Cb, 03.65.Ge, 24.60.Lz
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I. INTRODUCTION

Two level mixing is a fruitful concept and simple lan
guage in physics@1,2#. In the case of bound states the und
lying Hamiltonian is Hermitean and owing to this proper
an off-diagonal coupling between both states causes the
energies to repel each other. For this reason a freque
crossing is only possible, if the off-diagonal coupling is ze
@1–3#. The extension of two level mixing from bound t
unbound, i.e., decaying states is very natural. The deca
unbound states have complex energiesek and are described
by a non-Hermitean Hamiltonian@3–11#, however. The de-
composition of the complex energiesek into the real energies
Ek and frequenciesnk and the widthsGk andgk is given in
Eq. ~1!, where we have puth51:

ek5Ek2
i

2
Gk5nk2

i

2
gk . ~1!

We will refer to theek in the paper alternatively as comple
energies or complex eigenfrequencies. The fact that the
ergies of the decaying states are complex opens a rich
nario of crossings and anticrossings of energies or frequ
cies and width for the unbound two level system.
particular it has been suggested that whereas energie
bound states can cross only for a vanishing interaction@1#
the complex energies of unbound~decaying! states can cros
at a nonvanishing interaction strengthv @5–11#. A rather
surprising theoretical result is given in Ref.@11#. It states that
in the two unbound level system a real purely off-diago
interaction implies that either there is a joint crossing of b
the unperturbed frequencies and the perturbed widths
there is a joint crossing of the unperturbed frequencies an
the perturbed frequencies.

The terms frequency crossing or anticrossing refer to
situation that two frequencies or widths are measured a
function of a slowly varying parameterl. One speaks of
frequency crossing if there is a valuel0 for which the two
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frequencies become equal, i.e.,n1(l0)5n2(l0). One speaks
of frequency anticrossing if for all values of the parametel
the two frequencies differ, i.e.,n1(l)Þn2(l) for all l. This
language is also used for the two widthsg1(l) andg2(l).
The language comes from atomic physics, where such cr
ings and anticrossings are observed as a function of the m
netic field. At this point we want to mention a very ear
paper on coupled decaying electronic states of molecule
Estradaet al. @12#, which contains a discussion of the cros
ing phenomena. In this paper we will give experimental e
dence for this theoretical result, by performing experime
on microwave cavities, which have recently been shown v
useful in a study of quantum chaos and general resona
phenomena@13–18#.

II. EXPERIMENTAL DATA

The experiment was performed with a double box mic
wave cavity. It consisted of two nearly identical rectangu
boxes made of copper. These resonators were coupled
narrow slit in the partition wall, which allowed the two sub
systems to interact, see Fig. 1. The two antennasa and b
provided an inductive coupling of the resonator with t
transmission cables. Microwaves in the frequency range
992 to 994 MHz excited the first TM-mode of each box.
order to obtain two nearly equal complex eigenfrequenc
the two boxes were made nearly identical. In addition th
were two tools, which allowed to vary the parameters of
cavity: A small block of plasticP, of variable positiony in
the first box allowed to vary the eigenfrequencyn1

0 of the
first box, a slit of variable sizex in the wall separating the

r-

FIG. 1. Sketch of the twin microwave cavity. The antennasa
andb are coupled to the generator and to the detector, respectiv
The wall between the two cavities has an opening of widthx, which
couples them. The bodyP depicts a small block of plastics, whic
can be moved inside cavity 1 by an amounty from the wall.
1922 ©2000 The American Physical Society
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PRE 62 1923FREQUENCY AND WIDTH CROSSING OF TWO . . .
two cavities allowed to vary the coupling strengthv of the
two cavities.

A sinusoidal electrical signal from a generator of variab
frequencyn and amplitudeI a(n) was fed into the cavity
through the input antennaa and a signal of complex ampli
tude Ob(n) was observed from the output antennab by a
detector. Both, amplitude and relative phase of the ou
signal Ob(n) was measured. The ratio of complex amp
tudesSab(n)5Ob(n)/I a(n) was measured as a function
the generator frequencyn. It was analyzed using anSmatrix.
The form of theSmatrix was taken from nuclear physics an
is discussed extensively by Mahaux and Weidenmu¨ller
@19,20#. In nuclear physics the antennae correspond to
channels, which are denotedc, c8 there@16,21#. The form
of the S matrix is

Scc8~n!5eifcS dcc82 i(
nn8

WcnDnn8
21 Wc8n8D eifc8. ~2!

Here the propagatorDnn8 defines an effective symmetrica
non-Hermitean HamiltonianHnn8 by the relation

Dnn85ndnn82Hnn8 . ~3!

The amplitudesWcn , Wc8n8 describe the coupling of chan
nel c, respectively,c8, to the resonancen. As the walls ab-
sorb energy~the quality factorQ of the cavity has been of th
order of 103) theSmatrix is nonunitary. Thus the paramete
fc , fc8 , Wcn , Wc8n8 will be complex in general.

In the experiment we investigated the neighborhood of
two nearly degenerate fundamental modes of the two
cavity e1 , e2. These two eigenmodes are well separated
frequency from the other eigenmodes of higher order
thus the data can be accurately described by taking o
these two modes into account. Therefore the effective Ha
tonianH becomes a complex symmetrical 232 matrix. The
respective complex eigenvaluese1 and e2 of this effective
Hamiltonian matrix are identical with the poles of the corr
spondingS matrix. Strictly speaking resonance states do
have complex energies which are constants. The resona
which we are considering are however extremely narro
For narrow resonances one can use, however, effective
ergy independent parameters. According to the sizex of the
coupling slit in the microwave cavity one can decompose
effective HamiltonianH into an unperturbed~uncoupled!
part H0(y), which depends on the positiony of the plastic
block P, and a purely nondiagonal interactionV(x), which is
a function of the slit sizex only:

H5H~x,y!

5H0~y!1V~x!

5S e1
0~y! 0

0 e2
0D 1S 0 v~x!

v~x! 0 D . ~4!

Here we have assumed further that only the eigenmodee1
0 of

box 1 in which the plasticP is moved is affected by the
movement. Thus we assumee1

05e1
0(y) and e2

05const. The
decompositionH5H01V allows us to define besides th
perturbed complex eigenfrequenciese1 , e2 of H also the
ut

e

e
x
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d
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-
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n-

e

corresponding unperturbed complex eigenfrequenc
e1

0 , e2
0 of H0. As is well known@1–3# the en are related to

the en
0 and the interaction strengthv by

S e1,22
1

2
~e1

01e2
0! D 2

5
1

4
~e1

02e2
0!21v2. ~5!

In the following we study the relation between theen and the
en

0 in the neighborhood of the crossing point of the unp
turbed frequenciesn1

0'n2
0. In the experiment we measure

the complex numberSab(n)5Ob(n)/I a(n) as a function of
the generator frequencyn. The data far from the crossin
point showed two strong resonances corresponding to
two fundamental complex eigenfrequenciese1 ande2 of the
cavity. The data can in principle be analyzed directly w
the S matrix of Eq. ~2!. Instead of applying this descriptio
we used a special form Eq.~6! of the S matrix, which is
numerically stable in the vicinity of the complex energ
crossing point (e15e2), however. We give only theSmatrix
elementSab between the input antenna a and the output
tenna b:

Sab~n!52 iei (Fa1Fb)
vWa2

0 Wb1
0

e12e2
S 1

n2e1
2

1

n2e2
D , ~6!

whereFa andFb are defined as in Eq.~2!. The interactionv
is defined in Eq.~4! and Wa2

0 and Wb1
0 are the amplitudes

Wa2 andWb1, respectively, which are appropriate to the u
perturbed system (v50). In deriving Eq.~6! from Eq.~2! we
assume that in the unperturbed system there is no direct
pling from the antenna a to box 1 and from antenna b to b
2, i.e., we assumeWa1

0 5Wb2
0 50.

From the fits to the data far away from the crossing po
we obtained unique values of the two complex eigenfrequ
ciese1 ande2. Thee1 , e2 were obtained for several value
of the parametersx andy of the two perturbing elements o
the cavity, namely, the coupling strengthv5v(x) and the
positiony of the blockP. We measurede1 ande2 at 9 values
yk of y and for 2 valuesxi of x: x52.1 andx51.3 cm. Thus
we obtained 18 complex eigenfrequenciese1(x,y), e2(x,y).
In fitting the resonances in the vicinity of the crossing so
numerical stability problems were encountered even for
form of Eq. ~6! for the S matrix. This is not surprising, be
cause in the vicinity of the crossing pointn1

0'n2
0 the data

show only one resonance structure inuSu and a smooth be-
havior of the phaseFs of the Sab defined byS5eiFsuSu. In
order to get unique fit parameterse1 and e2 also in the vi-
cinity of the crossing point we used two extra constrain
First it was assumed that the sum of the two complex en
giese11e2 is at most a quadratic polynomial iny:

e11e25e1
01e2

05a1 ib1cy1dy2, ~7!

where the real coefficientsa, b, c, d may depend onv,
respectively,x but not ony. Furthermore it was assumed th
the productWa2

0 Wb1
0 is independent ofy. These assumption

were tested for the data far away from the crossing po
which gave unique fitted values fore1 and e2. Then these
assumptions were used to get unique values fore1 and e2
also in the vicinity of the crossing.
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From the perturbed complex frequenciese1 and e2 one
can calculate the two unperturbed complex frequenc
en

0(x,y) from the perturbed complex frequenciesen(x,y) us-
ing Eq. ~5!. In doing this we note first thate2

0(x,y)5e2
0(x)

because the plasticP moves only in box 1. Thus from mea
surements at the two positionsy and y8 at a constantx one
obtains eight real parameters from the following four co
plex quantities: e1(x,y), e1(x,y8), e2(x,y), e2(x,y8).
From these eight real parameters one can determine
quantities e1

0(x,y), e1
0(x,y8), e2

0(x,y)5e2
0(x,y8) and v,

which contain also eight real parameters, if we allowv to be
complex. Actually the measurements were performed a
different values of the distancey of the block P from the
wall. Thus the parametersen

0 andv are overdetermined. As
v5v(x) is thus fixed we will usev instead ofx ~Fig. 1! in
the further discussion. In a similar way we replace the d
tancey ~Fig. 1! by the more physical parameterdn1

0 which is
the difference between the unperturbed frequencies:

dn1
0~x,y!5n1

0~x,y!2n2
0~x,y!. ~8!

One finds, thatdn1
0 depends essentially only ony and is

nearly independent ofx. Thus we will usedn1
0 instead of the

distancey in the following.
It follows from Eq. ~5!, that the labeling of the two com

plex eigenfrequencies ase1 and e2 is arbitrary at each fre-
quencydn1

0. To get a unique labeling ofek , we note, that far
to the left of the crossing, i.e., fordn1

0!0 and for udn1
0u

!uvu. The perturbed and unperturbed complex eigenfrequ
cies must be approximately equal, i.e.,

ek'ek
0 , kP$1,2%. ~9!

By requiring continuity we obtain unique values of bothe1

ande2 as a function ofdn1
0 for given valuese1

0 ande2
0. In the

Figs. 2 and 3 we have plotted the values of the unpertur
frequenciesn1

0 , n2
0 and widthsg1

0 , g2
0 and of the perturbed

frequenciesn1 , n2 and widthsg1 , g2 as a function of the
differencedn1

0 of the unperturbed frequencies for two valu
of the coupling strengthv.

In Fig. 2 the coupling strength has a valueuvu
50.063 MHz and one observes width crossing and f
quency anticrossing. In Fig. 3 the interaction strengthv has
the smaller valueuvu50.015 MHz and one observes fre
quency crossing and width anticrossing.

The curves in the upper part of Figs. 3 and 2 show
unperturbed frequencies and widths as a function ofdn1

0.
These curves are obtained from the relations

e1
0~v !5e1

00~v !1dn1
0 , ~10!

e2
0~v !5e2

00~v !, ~11!

wheren1
00(v)5n2

00(v) is assumed to makedn1
00 well defined.

In Table I we give two sets of parameterse1
00(x), e2

00(x),
andv(x) obtained at two values ofv(x) andx. The curves in
the lower part of Figs. 2 and 3 were calculated with Eq.~5!
from the unperturbed complex frequencies, the interac
strengthv obtained from Table I and the relations~10!,~11!.
We note that the perturbed frequencies and widths are
reproduced by the corresponding unperturbed quantities
s
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by an essentially real interaction strengthv5eifvuvu. Ideally
the unperturbed complex frequencies should be indepen
of the interaction strengthv. This is essentially true althoug
there are some small discrepancies in particular in the wid
g1

0(v50.063) and g1
0(v50.015), which differ by about

10%.
We will now try to understand the observed crossings a

anticrossings from the basic relation~5!. We follow here the
theoretical results and the presentation of Ref.@11#. The
variation of the squared differences of the eigenfrequen
is obtained from Eq.~5!:

FIG. 2. Frequency anticrossing left-hand side~LHS! and width
crossing right-hand side~RHS!. The frequenciesn1

0 , n2
0 and widths

g1
0 , g2

0 of the unperturbed system (v50) and the corresponding
frequenciesn1 , n2 and widthsg1 , g2 of the perturbed system ar
shown in dependence of the parameterdn1

05n1
02n2

0. c1
0 and c2

0

denote the states of the isolated cavities 1 and 2. This is the st
coupling case 0.063 Mhz5uvu.vc50.037 Mhz. The lines
through the data points are calculated from Eqs.~5!,~9! in the main
text.

FIG. 3. Frequency crossing~LHS! and width anticrossing
~RHS!: The frequenciesn1

0 , n2
0 and widthsg1

0 , g2
0 of the unper-

turbed system (v50) and the corresponding frequenciesn1 , n2

and widthsg1 , g2 of the perturbed system are shown as a funct
of the parameterdn1

0 ~see caption to Fig. 2!. This is the weak
coupling case 0.015 Mhz5uvu,vc50.037 Mhz. The lines
through the data points result from Eqs.~5!,~9! in the main text.
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TABLE I. Calculated unperturbed resonance parameters and interaction strengthsv.

x (mm) uvu (MHz) argv (deg) n1
00 (MHz) g1

00 (MHz) n2
00 (MHz) g2

00 (MHz)

21 0.063~2! 2~2! 992.747~2! 0.285~4! 992.747~1! 0.424~3!

13 0.015~6! 7~23! 992.765~2! 0.321~4! 992.765~1! 0.422~3!
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~e12e2!25~e1
02e2

0!214v2. ~12!

In general the interactionv is complex. But in our specia
experimental casev is real within the error bars. Therefor
we restrict our considerations to a realv.

In order to simplify the calculations one decomposes
differences of the complex eigenfrequencies into real
imaginary parts

e1
02e2

05:e01 ig0, e12e25:e1 ig. ~13!

From Eqs.~12!,~13! one obtains

e0g05eg, ~14!

e22~e0!254v22~g0!21g2. ~15!

One can classify the behavior of the perturbed complex
quencies at a point where the unperturbed real frequen
cross, i.e., fordn1

05n1
02n2

05e050. One finds three case
which are distinguished by the value of the interacti
strengthuvu in comparison to a critical valuevc :

vcª
1
2 ug0u5 1

4 ug1
02g2

0u. ~16!

The three cases are as follows.
Overcritical coupling. If uvu.vc , one findsn1Þn2 and

g15g2, i.e., frequency anti-crossing and width crossing.
Critical coupling. If uvu5vc , one findsn15n2 and g1

5g2, i.e., a joint frequency and width crossing, which is al
referred to as complex frequency crossing.

Subcritical coupling. If uvu,vc , one hasn15n2 and
g1 Þg2, i.e., frequency crossing and width anticrossing.

The proof of these statements taken from Ref.@11# is
straightforward from the above. From Eq.~14! ande050 it
follows eg50, i.e.e50 or g50. Frome050 and Eq.~15!
one obtains foruvu. 1

2 ug0u the relatione2.0 and thusg50
follows from eg50. For e050 and uvu, 1

2 ug0u it follows
from Eq. ~15! that g2.0 and thuse50. Finally, for e050
and uvu5 1

2 g0 we haveueu5ugu50.
The full complex energy crossingueu5ugu50 has been

discussed in detail in Ref.@10#. We note that width crossing
for uvu.vc can be understood rather easily. Namely for
appropriately large interaction strengthv the two eigen-
modes are equally mixed and as a consequence the w
are equal. It is also plausible that a larger interaction stren
v is needed if (g0)25 1

4 (g1
02g2

0)2 is large, i.e., if the differ-
ence in the unperturbed width of the two eigenmodes
large. An interesting aspect is that there is no subcrit
case,uvu,vc , if the unperturbed widths are equal:g1

05g2
0.

In this case there is no frequency crossing foruvuÞ0. This is
a direct generalization of the von Neumann–Wigner ca
which forbids crossing atvÞ0 for bound states, i.e., forg1

0

5g2
050.
e
d

-
ies

n

ths
th
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l

e,

We now compare the data in Figs. 2 and 3 with the th
oretical expectations. One finds, 0.063 MHz5uvu.uvcu
50.037 MHz for the data of Fig. 2. This is the overcritic
coupling case. And indeed frequency anti-crossing and w
crossing is observed. For the data in Fig. 3 one
0.015 Mhz5uvu,uvcu50.025 MHz this is the undercritica
coupling case and indeed one finds frequency crossing
width anticrossing. We note the small difference ofuvcu in
the experiments done at different couplingsv. Complex fre-
quency crossing is expected arounduvu50.030 MHz and
lies thus in between the two measured interaction stren
uvu50.015 MHz anduvu50.063 MHz. It would be very in-
teresting to perform experiments very close touvu5uvcu. To
do this requires however a much more stable setup, wh
we are developing at present. As all data are well descri
by the model we can claim to have established from th
data also complex frequency crossing. Clearly it would
more convincing if data points much nearer to the comp
frequency crossing would be measured. But to perform
experiment requires a much more stable apparatus, which
are presently designing.

We want to add a plausibility argument for width crossi
at large interactions. For this we consider the statescn

0 ,
which are the eigenstates of the isolated cavitiesn51,2 with
unperturbed complex eigenfrequenciesen

0 . In analogy to the
bound state case we find for a largeuvu frequency anticross-
ing, see Fig. 2. This and the requirement of continuity imp
as explained below Eq.~8!, that the statec1

0 turns into the
statec2

0 with increasingdn1
0. As a consequence the widt

g1(dn1
0!0)'g1

0 changes intog1(dn1
0@0)'g2

0 and vice
versa. From the continuity ofg1 andg2 one finds then that
g1 andg2 must cross ifg1

0Þg2
0.

III. CONCLUSION

Summing up, we have investigated a doublet of two
teracting resonances in a two box microwave cavity. W
have observed experimentally width and frequency cross
at a nonvanishing interaction strengthuvuÞ0. These experi-
mental results have corroborated the theoretical freque
and width crossing and anticrossing relations proposed
Ref. @11#. The frequency and width crossing and anticross
are obtained at an interaction strength above and belo
critical interaction strengthvc5 1

4 ug1
02g2

0u. By measuring
above and below of the critical interaction strengthvc we
have found signatures which allow to identify full comple
frequency crossing, which should occur atuvu5vc . We note
that if the two widths differ from each other, one has a f
complex frequency crossing at a nonvanishing interactiov
Þ0. This clearly differs from the bound state case, wher
frequency crossing is only allowed forv50. We think that
this paper demonstrates that the study of the unbound
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level system in two coupled microwave cavities is a ve
rewarding enterprise. In this respect a new prediction of
change of the relative phases as a function of paramete
two interacting resonances by Heiss@22# is mentioned.
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